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Percolation thresholds of simple fluids 

D M Heyes and J R Melroset 
Department of Chemistry, Royal Holloway and Bedford New College,University of 
London, Egham, Surrey TW20 OEX, UK 

Received 18 April 1988 

Abstract. The percolation characteristics of hard-sphere (HS)  and Lennard-Jones (LJ)  fluids 
are determined by molecular dynamics computer simulations. The LJ percolation threshold 
is raised in the hard-core limit and lowered in the soft-core limit when compared with the 
equivalent hard-sphere fluid, using a temperature-dependent effective hard-sphere diameter. 
This difference in the soft-core limit increases as T-. T,. The values for two percolation 
exponents are close to the values for random static percolation. 

1. Introduction 

Molecular fluids and colloidal suspensions interacting via continuous potentials can 
be approximated by a hard-sphere (HS) core, of diameter uHS, and a ‘soft’ outer 
penetrable shell, of thickness 6uHs. We call S + O  the hard-core limit and 6+00 the 
soft-core limit. The transport coefficients, thermodynamic properties, electrical conduc- 
tivity and mechanical parameters are examples of quantities that can be effectively 
interpreted on the basis of the degree of overlap of the soft shells (e.g. Seaton and 
Glandt 1987a). A change in slope of the density dependence of these quantities has 
been observed to occur at a density corresponding to the formation of infinitely spanning 
(“percolating’) clusters formed from particles separated by a characteristic local interac- 
tion distance for the physical observable (Heyes and Melrose 1988). The percolation 
transition (PT) is defined as follows. Starting on an arbitrary molecule in the cluster 
one can step to another neighbour in the cluster if their centre-centre separations are 
within the distance us = (1 + 6)uHS. If this procedure can continue, still remaining in 
the same cluster, so that at least one path with an arbitrarily large distance from the 
starting point can be traced, then the cluster is said to percolate. 

The PT characteristics of idealised systems such as particles on lattices (Stauffer 
and Coniglio 1987), non-attractive hard-core-based continuum fluids (Balberg and 
Binenbaum 1987, Sevick e ta l  1988) and hard cores with attractive terms such as the 
square-well fluid (Bug e ta l  1985) have been considered. A MC continuum study of 
the PT of model colloidal suspensions (Seaton and Glandt 1987b) has been made using 
an ‘adhesive’ sphere potential. We continue this development towards more realistic 
systems, by investigating the PT of a model molecular fluid, represented by the Lennard- 
Jones ( LJ) potential, which has a continuous repulsive and attractive component. We 
present a molecular dynamics analysis of the PT of the HS and LJ fluids in three 
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dimensions, to assess the effect of a soft repulsive and attractive interaction potential 
on the percolation thresholds. 

2. Simulation details 

The details of the M D  technique used for particles interacting via the LJ potential, 
4 ( r )  = 4 ~ [ ( u / r ) ' ~ - ( ~ / r ) ~ ]  have been described recently (Heyes 1987). The M D  simu- 
lations were performed on cubic unit cells of volume V containing N = 32, 108, 256, 
500 and 864 particles for both HS and LJ fluids. In the LJ simulations the Verlet 
algorithm was used to increment the positions of the molecules. The temperature was 
fixed by half-timestep velocity rescaling. The LJ timestep was 0.01 at T = 1.456 and 
0.005 at T = 6.0. The HS MD was perfoimed as described by Allen and Tildesley (1987). 

The cluster-search routine has been given elsewhere (Heyes and Melrose 1988). 
The scheme selects the percolating clusters that span all (periodic) space, not just those 
that span the M D  cell also. For finite-N periodic systems, the infinite-N or 'true' 
percolation transition density is best estimated as the density when the probability of 
discovering a percolating cluster in a timestep, the percolation fraction, P, equals 0.5. 
This is because the density at which P=O.5 shows the least system size dependence. 
The FORTRAN programs were optimised for a Cray-1S computer at the University of 
London Computer Centre. The programs automatically searched for the density at 
which P=O.5, in the vicinity of P=O.5, by linear regression. Such sub-average 
simulations were from 5000 timesteps at N =  108 to 1000 timesteps at N=500. The 
statistics were generally not good enough to establish accurate finite-scaling scaling 
corrections but test simulations on N = 32, 108,256,500 and 864, revealed that changes 
in the PT density above N = 256 FT densities were not resolvable on the figures presented 
below. 

3. Results and discussion 

In figure 1 we show percolation lines (PL) for a wide range of search diameters (us,  
in LJ distance units, U )  placed on the LJ phase diagram, k g T / E  + T against number 
density, p = N v 3 /  V .  The PL indicate that the soft interactions lower the percolation 
threshold for us 3 1 . 2 ~  but increase it for smaller us. (The distance 1 . 2 ~  approximately 
corresponds to the end of the first coordination shell.) This implies that there is an 
enhancement of local structure between the first and second coordination shells but a 
depletion in the inside of the first coordination shell as temperature decreases. To 
compare with the square-well work of Bug et a1 (1985) it is convenient to re-plot these 
data, in figure 2, in terms of the effective hard-sphere density. This is obtained from 
pHS = P ( U " ~ / U ) ~ ,  where uHS/u = 1.0217(1-0.0178/ T'.256)/  T1'12, obtained by matching 
LJ and HS (MD-modified Enskog) shear viscosities (Hammonds and Heyes 1988). On 
decreasing the temperature, as T +  T,, the critical temperature, the equivalent HS 

diameter of the LJ particles increases so that for a constant us in LJ U units, the LJ 

particle becomes less like a soft core and more like a hard core. The HS percolation 
density therefore increases rapidly as T +  T, for small us. 

It is not (yet) possible to determine where the PL terminates on the co-existence 
line because MD or Metropolis Monte Carlo are subject to pronounced N dependencies 
in the critical region. 
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Figure 1. The percolation thresholds for the LJ fluid superposed on its phase diagram. 
The lines denote boundaries between non-percolating states (to the left) and percolating 
states (to the right) of the line. Each line corresponds to, and is annotated by, a particular 
search diameter us in LJ units. The points are for N = 108 and the @ points are for 
N = 500. 
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Figure 2. As for figure 1, except that the LJ densities are converted to their equivalent HS 
values (temperature dependent). 
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It is informative to determine more specifically the effect of the hard core on the 
percolation density of the assembly of soft-shell spheres. Following Bug et al (1985), 
this is well represented by &Hs = 4 H S (  1 $. and 4HS = (57/6)p~s. Note that any LJ 

state can be compared with a nearest ‘equivalent’ HS fluid by making the identity, 
pHS = p l J ( u H S / a ) 3 .  Figure 3 shows the variation of &Hs at percolation with 6, both 
dimensionless quantities, for the LJ fluids and HS fluids. The percolation threshold 
is raised in the hard-core limit and lowered in the soft-core limit when compared with 
the equivalent hard-sphere fluid, using a temperature-dependent effective hard-sphere 
diameter. The soft-core trend is in agreement with the results of Bug et a1 (1985) on 
the square-well fluids. In order to interpret this behaviour it is worth noting that, for 
each S value on figure 3, we are principally interested in local structure at that pair 
separation. 

c 
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Figure 3. A plot of $,, against S for the HS fluid ( 0 )  and the LJ fluids at T =  1.456 (a) 
and T=6.0 ( 0 ) .  

We will first consider the soft-core limit. In order to understand this behaviour it 
is useful to examine the pair radial distribution function, g ( r ) .  Figure 4 shows g ( r )  
for the low density p = 0.193 and near-critical temperature T = 1.456 LJ state. The 
separation, r, is scaled by the hard-sphere diameter and the g ( r )  compared with the 
‘equivalent’ hard-sphere g (  r )  obtained by independent HS MD. It reveals that attractive 
interactions cause a clustering of LJ molecules at intermediate distances between 
r = 1.OaHs and 1.5aHs in the first coordination shell. This is largely absent with the 
nearest equivalent hard-sphere fluid, being a consequence there of the excluded volume. 
Percolation occurs at lower densities (4HS) than the equivalent h_ard sphere fluid for 
us in this range due to this increase in local density. Therefore 4HS at percolation is 
lower for LJ than HS at the same S. As the LJ temperature increases, this effect gradually 
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Figure 4. A comparison between g ( r )  against r / u H s  for the LJ state point, pu = 0.193, 
T =  1.456 (0)  and the HS state point pHS=0.181 ( T =  1.0) (full curve); N = 108. 

disappears and the LJ and HS curves come closer together. The LJ fluid becomes 
structurally identical with the equivalent HS fluid, at intermediate distances at least. 

We will now consider the hard-core limit. The hard-core limit concerns high density 
fluids and small us 1.lu. In this part of figure 3, the LJ percolation density exceeds 
that of the equivalent hard-sphere fluid. The LJ and HS g ( r )  in this part of the phase 
diagram are shown in figure 5 .  In this distance range there are fewer particles for the 
LJ than the equivalent HS fluid. Consequently, percolation occurs at a higher dHS for 
LJ than HS systems at the same g S  in HS units. This difference between HS and LJ 

behaviour does not disappear with increasing temperature, as does the above soft-core 
effect. 

r 

Figure 5. As for figure 4 except that the LJ state point is pu = 0.808 (T = 1.456) and the 
HS state point is pHS = 0.758 ( T  = 1.0). 
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Figure 6. The cluster number distribution for non-percolating clusters, n,(s) for the LJ 

state point, prJ =0.566, T =  1.456, us= 1 . 1 ~  and N =500. This state point is at the 
percolation threshold. The exponent of n , x ~ - ~  is 7=2.1 ztO.1. 

We now consider some cluster statistics of the LJ system. In figure 6 we consider 
n,, the average number of clusters of size s, at the PT for a N = 500 LJ fluid, p = 0.566, 
T = 1.456 and us = 1 . 1 ~ .  Considering only non-percolating clusters, n, should obey 
the scaling law, n , K s - ' ,  where the accepted value for static random percolation for 
T is 2.2 (Stauffer 1986, Seaton and Glandt 1987b). We find ~=2.10*0.05 for the LJ 

fluid irrespective of temperature or whether one is the soft- or hard-core limit. We 
found the same value for the HS fluid. 
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Figure 7. The s dependence of the radius of gyration, R,, for the LJ state point, pu = 0.5120, 
T=6.0 ,us= l . l u ,  N=500.  ForR,xs1lDr,thenthelineinthefigureindicates D,=2.3*0.1. 
This state point is at the percolation threshold. 
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We now look at the tenuity of the clusters at the PT by considering the radius of 
gyration, R, : 

where R, is the vector separation between particles i and j .  The scaling relationship 
here is RgaS1IDF as r + c o ,  and where Df  is the fractal or Hausdorff dimension 
(Herrmann 1986). Figure 7 gives a typical example, for the supercritical LJ state 
p = 0.5120 and T = 6.0 at the PT. There is an intermediate s regime where this scaling 
relationship is obeyed, with Df  = 2.3 f 0.1, slightly lower than the accepted value for 
3~ static random percolation, Df = 2.5 (Stauffer 1986). As for n,, the finite size of the 
M D  cell leads to deviations from scaling laws in the s+ N limit. 

4. Conclusions 

We have used, for the first time, a molecular dynamics computer simulation to determine 
the percolation characteristics of a model off-lattice fluid. The percolation characteris- 
tics of the Lennard-Jones molecular fluid cannot be mapped onto an equivalent 
hard-sphere fluid. This arises from the attractive interactions in the soft-core regime 
and soft-repulsion term to the potential in the hard-core regime. We therefore have 
demonstrated another consequence of molecular forces on the percolation threshold. 
However, the calculated values for the exponents, 7 and Df, suggest some extension 
of universality to the Gibbs-weighted interacting systems studied here. 
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